
86 JOURNAL OF SOIL AND WATER CONSERVATIONJAN/FEB 2018—VOL. 73, NO. 1

R. Daren Harmel is the director of the USDA  
Agricultural Research Service (ARS) Center for 
Agricultural Resources Research, Fort Collins, 
Colorado. Kevin King is the research lead-
er of the USDA ARS Soil Drainage Research 
Unit, Columbus, Ohio. Dennis Busch is the re-
search manager of Pioneer Farm, University of  
Wisconsin-Platteville, Platteville, Wisconsin. 
Doug Smith is a soil scientist at the USDA 
ARS, Grassland, Soil and Water Research Lab-
oratory, Temple, Texas. Francois Birgand is an 
associate professor in the Biological and Agri-
cultural Engineering Department, North Caro-
lina State University, Raleigh, North Carolina. 
Brian Haggard is a professor in the Biological  
Engineering Program, College of Engineering, 
University of Arkansas, Fayetteville, Arkansas.

Measuring edge-of-field water quality: 
Where we have been and the path forward
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Abstract: Heightened pressure to demonstrate the resource benefits of conservation practices 
and continued high-profile water quality impairments and concerns are increasing the need 
to quantify edge-of-field (EOF) water quality. With this in mind, this manuscript summarizes 
previous developments in EOF water quality sampling and presents current research and 
glimpses into the future. This manuscript focuses on constituent sampling at the field-scale 
or at the “edge-of-field;” however, many of the findings are also applicable for small stream 
or small watershed sampling. With development of programmable automated samplers and 
initiation of numerous automated sampling projects, it became readily apparent that neither 
equipment manufacturers nor researchers could provide guidance on design components 
(e.g., sample initiation, timing/intervals, and type). This was problematic as available mon-
itoring resources are too limited and data needs too great for such projects to be designed 
solely based on field experience and without a scientific basis or with complete disregard for 
potential data quality implications. Thus practical, science-based guidance for EOF sampling 
was developed and fundamental understanding of the inherent uncertainty was established 
to assist researchers, municipalities, consulting firms, and regulatory agencies improve data 
quality and monitoring resource efficiency. Looking to the future, further improvements are 
needed related to lower cost systems, practical improvements, and enhanced in situ sampling, 
along with enhanced understanding and consideration of data uncertainty in modeling and 
decision making.
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Water quality research and mitigation 
efforts are often constrained by the lack 
of adequate data on nonpoint source 
pollution, specifically constituent flux 
under differing soil, hydro-climatic, and 
land use and management conditions. 
The need for additional data is particularly 
important for watershed modeling, which 
often guides regulatory, programmatic, and 
management decision making (Sharpley et 
al. 2002; White et al. 2012, 2014; Black et al. 
2014). Although watershed models, regional 
relationships, or professional judgment can 
provide useful information, measured field-
scale data are needed to confirm and/or 
improve these estimates. The need for field-
scale or “edge-of-field” (EOF) data appears 
to be increasing (figure 1), likely due to 
increased pressure to demonstrate the water 
quality benefits of conservation expenditures, 
evaluate long-standing and innovative prac-
tices, and address high-profile water quality 

impairments and concerns (e.g., City of 
Des Moines, Iowa, Water Works [Henderson 
2015]; Lake Erie [Borchardt 2015]).

With this increasing need in mind, this 
manuscript presents background information, 
which sets the stage for recent developments 
and summarizes how those developments 
advanced the science of EOF water quality 
sampling. In addition, current research and 
a glimpse into the future are presented. This 
article focuses on constituent sampling at the 
field scale or at the “edge-of-field” (~0.01 to 
250 ha); however, many of the findings are 
also applicable at the small stream or water-
shed scale at which well-mixed conditions 
can be reasonably assumed such that water 
quality is adequately captured at a single 
intake point. Water quality sampling at this 
scale necessitates quantifying flux in surface 
runoff produced by precipitation excess and 
snowmelt, which can also be referred to as 
“wet weather” or stormwater sampling.

Background—Where We Have Been
Historical View of Edge-of-Field Sampling. 
To evaluate sampling equipment and col-
lection methods used in EOF water quality 
sampling, the 67 field-scale studies of nitrogen 
(N) and phosphorus (P) runoff from agricul-
tural land uses published from 1968 through 
2014 were analyzed (MANAGE database; 
Harmel et al. 2016b). Manual sample collec-
tion and collection of samples by mechanical 
automated samplers were relied upon in the 
1970s and 1980s (figure 1). Beginning in 
the 1990s, use of electronic (programmable) 
automated samplers (e.g., ISCO [Lincoln, 
Nebraska] and Sigma) increased substantially; 
however, mechanical automated samplers 
were still used, presumably in remote areas 
without power and/or as a low cost alterna-
tive (Parker and Busch 2013).

Need for Automated Sampling Guidance. 
Around the year 2000, researchers, consul-
tants, and others tasked with water quality 
monitoring recognized the lack of and need 
for practical guidance on “wet weather” or 
stormwater sampling to assess nonpoint 
source contributions (McFarland and Hauck 
2001; Harmel et al. 2003; Behrens et al. 2004). 
Extensive guidance on field techniques and 
quality control for manual sampling was 
available at that time for stream and river 
sampling (Wells et al. 1990); however, little 
guidance was available for the relatively new 
technology—electronic (programmable) 
automated water quality samplers.

The need for automated sampling guid-
ance became clearly apparent as a rapidly 
growing number of studies began to deploy 
automated samplers (figure 1) to collect 
stormwater samples at the EOF and small 
watershed scale. Automated sampling 
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Figure 1
Methods of sample collection for published field-scale water quality studies  
(Harmel et al. 2016b).
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became the preferred alternative because 
manual storm sampling is very difficult for 
many reasons, including short runoff dura-
tions, remote site locations, inclement 
weather conditions, and expensive person-
nel requirements. Deploying automated 
samplers necessitated that researchers and 
technical staff examine published methods 
for collecting runoff water samples; how-
ever, researchers such as King et al. (2001) 
found that design components needed for 
programming these samplers had not been 
studied. Additionally, neither equipment 
manufacturers nor researchers could provide 
guidance on setting storm thresholds (when 
to initiate sampling), choosing the sample 
type (composite or discrete), or determining 
the sampling frequency (based on time or 
flow intervals). Since science-based guidance 
on technical components of automated sam-
pling was not available, previous monitoring 
projects were ideally designed based on field 
experience, but too commonly with no 
regard for data quality and cost implications.

Whereas guidance documents (USDA 
1996; USEPA 1997) provided valuable 
information on equipment types, moni-
toring plans, study design, and data analysis 
for EOF and small watershed sampling, 

they did not address these technical design 
components. Although mechanical auto-
mated samplers had been developed years 
before to sample at these smaller scales 
(Geib 1933; Parsons 1954, 1955; Allen et al. 
1976; Claridge 1975; Edwards et al. 1976; 
Sheridan et al. 1996; Bonta 1999), previous 
research focused on installation and opera-
tion of the mechanical samplers.

Automated Samplers (Mechanical). 
Mechanical automated samplers have been 
utilized for decades for numerous applica-
tions at the EOF and small watershed scale. 
Chickasha samplers collect time-weighted 
samples when activated by a float water 
level switch (Allen et al. 1976). In contrast, 
rotating slot samplers and multislot divisor 
samplers collect flow-weighted samples and 
estimate flow volume, event mean con-
centrations (EMCs), and constituent loads. 
The Coshocton wheel sampler is a rotating 
slot sampler that was designed and devel-
oped by W.H. Pomerene (Parsons 1954, 
1955) and has been used in many sampling 
projects. It does not require electric power 
or extensive maintenance (Edwards et al. 
1976). Bonta (1999, 2002) modified the 
original Coshocton sampler to accommo-
date flow with high sediment concentrations 

and large sediment particles. Malone et al. 
(2003) modified the rotating slot sampler to 
collect flow-weighted samples from various 
flow conditions from tile drains, springs, or 
lysimeters (i.e., slow drips to continuous 
flows). Variations of the Geib (1933) mul-
tislot sampler have also been used for various 
flow and topographic conditions (Sheridan 
et al. 1996; Franklin et al. 2001; Pinson et al. 
2003). Another type called siphon samplers 
or single-stage samplers were developed 
by the Inter-Agency Committee on Water 
Resources, Subcommittee on Sedimentation 
(ICWR-SS 1961) to collect a sample of 
near-surface water during the hydrograph 
rising limb. Siphon samplers are simple, 
inexpensive alternatives, but have several 
limitations as described by Edwards and 
Glysson (1988) and Graczyk et al. (2000).

Development of Guidance for Automated 
Sampling. In the 1990s and 2000s, sub-
stantial research focused on the impact of 
various sampling strategies and load estima-
tion techniques on perennial streams and 
rivers (Cohn et al. 1989; Rekolainen et al. 
1991; Preston et al. 1992; Robertson and 
Roerish 1999; Stone et al. 2000; Haggard et 
al. 2003; Robertson 2003), but a few others 
(Agouridis and Edwards 2003; Toor et al. 
2008) conducted similar research at smaller 
scales. Previous research comparing time and 
flow-weighted composite sampling (Shih et 
al. 1994; Izuno et al. 1998) and evaluating 
the effects of sample timing and frequency 
(Tate et al. 1999; Wang et al. 2003) set the 
stage for research on design components for 
automated sampling.

The growing awareness of the need for 
research and practical knowledge around the 
year 2000 prompted experienced profession-
als (McFarland and Hauck 2001; Behrens et 
al. 2004) to begin sharing practical recom-
mendations related to automated sampling at 
these smaller scales. This influenced research-
ers to launch concerted research programs to 
provide the scientific basis to complement 
practical knowledge, which produced a sub-
stantial body of literature on EOF and small 
watershed sampling (King and Harmel 2003, 
2004; King et al. 2005; Miller et al. 2007; 
Stuntebeck et al. 2008; Harmel et al. 2002, 
2003). This work was compiled and used to 
establish sampling protocols (Harmel et al. 
2006a) for the USDA Conservation Effects 
Assessment Project (CEAP) (Mausbach and 
Dedrick 2004).
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Automated Samplers (Electronic). The 
science-based and practical guidance on 
automated sampling at the EOF and small 
watershed scale is summarized subsequently. 
The storm sampling threshold is an import-
ant design component because sample 
collection begins and typically continues 
throughout the duration of flow above this 
threshold or until flow stops. Thus, the sam-
pling threshold plays an important role in the 
number of samples collected and the propor-
tion of the runoff that is sampled. Harmel et 
al. (2002) suggested that increasing the storm 
sampling threshold introduces substantial 
uncertainty; therefore, thresholds should be 
set low enough to sample the vast major-
ity of the storm event. In general, if runoff 
produces water deep enough to sample, then 
sampling should commence.

The sample collection intake should 
be firmly fixed in well-mixed flow in the 
channel center in a run/riffle, not a pool, 
or upstream of the local hydraulic control. 
To prevent pump malfunction, locate the 
sampler intake such that it is completely 
submerged when flow reaches the storm 
sampling threshold. At EOF sites, it is safe 
to assume a single intake adequately cap-
tures constituent concentrations because 
of well-mixed and shallow flow conditions 
(McCarthy et al. 2008, 2009). However, 
potential concentration gradients should 
be considered, especially for constituents 
commonly associated with larger particu-
lates (Taylor et al. 2005; Harmel et al. 2003, 
2006a). Although it is likely unnecessary at 
EOF sites, a vertical intake with multiple 
entry points or a depth-integrated sampling 
arm could be employed to better capture 
vertical concentration gradients (Gettel et 
al. 2011; Selbig et al. 2012). Where this is 
not feasible, the relationship between con-
centrations at the intake and in the total 
cross-section can be established for the range 
of expected discharges (Ging 1999). Then, 
intake concentrations can be corrected to 
represent the actual cross-sectional concen-
tration; however, these relations can change 
over time, requiring subsequent adjustment 
(R. Slade, personal communication, 2005).

Sample tubing should be installed such 
that a continuous negative gradient (downhill 
slope) occurs to facilitate drainage of residual 
water after sample collection to minimize 
the build-up of sediment and other constitu-
ents (Boyer and Kuczynska 2003; Hathaway 
et al. 2010, 2014). It is also important to 

ensure the sample tube is securely attached, 
covered from direct sunlight, and does not 
block flow. Raising the intake slightly off 
the channel bottom will mitigate this, while 
not impacting the representativeness of sub-
sequent samples (although this may increase 
the storm sampling threshold). Pre- and post-
collection tube rinsing and purging (one to 
two cycles) is also recommended to clean the 
sample tube between samples and between 
events (Solo-Gabriele et al. 2000; Hach 
2008). Alternatively, the sample tube can be 
cleaned (be careful to remove residual soap 
or disinfectants) or replaced regularly, but 
these options are costly and labor intensive.

The timing and frequency of sample 
collection are also important design com-
ponents, as automated samplers can be 
programmed to take samples on time or flow 
volume intervals. With time-weighted sam-
pling, samples are taken on time increments, 
such as every 30 minutes. Time intervals are 
easy to measure accurately and clock failures 
are rare; however, with short time intervals, 
frequent sampling can quickly exceed sam-
pler capacity, causing much of the runoff 
event to be missed. Although time-weighted 
sampling does not rely on discharge mea-
surement to determine sampling intervals, 
discharge data are needed to calculate 
constituent loads. With flow-weighted sam-
pling, samples are collected based on flow 
volume (e.g., 5,000 m3). Establishing flow-
weighted sampling intervals in terms of 
volumetric depth (e.g., 2 mm runoff depth 
based on watershed area) facilitates consis-
tent sampling frequency for different sized 
watersheds. Flow-weighted sampling does 
require continuous flow measurement but 
readily produces the commonly reported 
EMC. The constituent load for a particular 
event can be readily determined as the prod-
uct of the EMC and the total flow volume.

Several studies have shown that small/
short sampling intervals should be used to 
better characterize water quality (Richards 
and Holloway 1987; Shih et al. 1994; Miller 
et al. 2000; Leecaster et al. 2002; King and 
Harmel 2003, 2004; Harmel and King 2005); 
however, the intervals must also consider 
the importance of sampling throughout long 
duration/large volume events. King and 
Harmel (2003) and Harmel et al. (2003) pro-
vide guidance on selecting time and volume 
intervals for automated sampling on small 
catchments, and King et al. (2005) developed 
a procedure to determine sampling intervals 

based on catchment and constituent charac-
teristics. Although Harmel and King (2005) 
concluded that volumetric depth intervals up 
to 6 mm may be appropriate in certain con-
ditions, smaller intervals (1 to 2.54 mm) are 
more widely applicable. These smaller vol-
umetric depth intervals allow smaller storm 
events to be sampled and moderate to large 
storm events to be sampled more intensively 
with little to no increase in uncertainty, 
especially if composite sampling is utilized.

The choice between discrete versus com-
posite sampling is another important design 
component. Automated samplers typically 
can collect discrete samples (one per bottle) 
or composite samples (two or more subsa-
mples per bottle). Discrete sampling best 
captures temporal concentration variability 
within events to better understand system 
dynamics, but it increases uncertainty in 
long duration/large volume events if sampler 
capacity is exceeded prior to the end of the 
event. In contrast, composite sampling allows 
longer duration/larger volume events to be 
sampled throughout (McFarland and Hauck 
2001). Because these sampling methods 
produce either individual (discrete) or aggre-
gated (composite) data, the choice between 
the two will depend on study goals and data 
quality needs.

Composite automated sampling increases 
sampler capacity by placing two or more sub-
samples in each bottle, making it a valuable, 
cost-saving alternative. Composite sampling 
introduces less error than increasing mini-
mum flow thresholds or increasing sampling 
intervals, especially for volume-proportional 
sampling (Miller et al. 2000; Harmel et al. 
2002; King and Harmel 2003; Harmel and 
King 2005). Composite strategies are valu-
able for projects designed to quantify average 
concentrations or total loads. Composite 
flow-weighted sampling with a single-bottle 
is an effective strategy for reducing analytical 
costs while intensively sampling entire events 
(Shih et al. 1994; Harmel et al. 2003, 2006a). 
With this strategy, many 100 to 200 mL 
subsamples can be composited into a single 
sample to produce the EMC. For composite 
sampling, subsample volumes of at least 100 
to 200 mL are recommended because smaller 
volumes are difficult to accurately pump 
(Harmel et al. 2006a). Alternatively, unneces-
sarily large sample aliquots should be avoided 
because pumping large volumes can take two 
to seven minutes per sample (depending on 

C
opyright ©

 2018 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 73(1):86-96 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


89JAN/FEB 2018—VOL. 73, NO. 1JOURNAL OF SOIL AND WATER CONSERVATION

the pumping rate, head, and tubing length), 
which can result in missed samples.

Composite samples can also be produced in 
the lab from discrete field samples (McCarthy 
et al. 2008). To manually composite sam-
ples from discrete flow-weighted samples, 
withdraw and combine equal-volume sub-
samples. For discrete time-weighted samples, 
withdraw and combine subsample volumes 
proportional to the flow during the time 
interval. Manual compositing requires con-
siderable postprocessing time and effort but 
does allow considerable flexibility. For exam-
ple, each discrete sample can be analyzed for 
one constituent, while the composite sample 
can be analyzed for others. Similarly, manual 
compositing can minimize errors associated 
with sampler failure during an event (i.e., 
missing one sample in a volume-proportional, 
composite strategy will increase uncertainty 
as the volume sampled is no longer accurate; 
while manual compositing can compensate 
for missed samples).

Other practical guidance has emerged 
concurrently with the science-based rec-
ommendations regarding technical sampling 
components, and both are critical for suc-
cessful EOF and small watershed sampling. 
The practical recommendations begin with 
a sincere acknowledgment that EOF runoff 
sampling is difficult, time consuming, and 
expensive (Agouridis and Edwards 2003; 
Harmel et al. 2006a). Additionally, gather-
ing all available site-specific information and 
previous data and determining the type and 
amount of data to collect and equipment 
required is essential to estimate personnel and 
budget requirements. Although automated 
electronic samplers can sample consistently 
at multiple sites and take multiple samples 
throughout storm events, they are much 
more expensive than mechanical samplers. In 
addition, they are far from trouble-free, thus 
proactive maintenance and prompt repair is 
necessary to limit equipment malfunction 
and data loss (USDA 1996; USEPA 1997; 
Harmel et al. 2006a). Maintenance should 
be performed weekly or biweekly, whether 
for remote or readily accessible sampling 
sites. Routine maintenance should include 
inspection of the power source, pump tube, 
sample intake, and desiccant; calibration of 
the stage recorder to ensure flow measure-
ment accuracy; and data retrieval to avoid 
data loss in potential power failures or equip-
ment malfunctions.

EOF sampling sites are best established 
at the field boundary, preferably within the 
natural drainage way (USDA 1996); how-
ever, construction of small earthen berms/
barriers may be necessary to direct runoff to 
a single outlet. Precalibrated hydraulic con-
trol structures (established stage-discharge 
relationship) are highly recommended 
(Holtan et al. 1962; Harmel et al. 2006a). 
Proper installation and maintenance are 
critical for accurate discharge measurement 
(Stuntebeck et al. 2008; Komiskey et al. 
2013). Shelters should be built to house and 
protect sampling equipment from natural 
threats, vandalism, and theft, and they should 
be accessible during wet weather (Haan et 
al. 1994; USEPA 1997). The shelter loca-
tion should be as close to the sample intake 
as possible to reduce pumping distances 
(Stuntebeck et al. 2008). Livestock, rodents, 
and insect access to equipment shelters, elec-
tric lines, communication cables, and sample 
tubes should be controlled to avoid equip-
ment damage and sample contamination.

Successful EOF water quality sampling 
relies on committed, on-call field staff trained 
in quality assurance/quality control (QA/QC) 
methods, equipment operation and mainte-
nance, hydrology, and safety (USEPA 1997). 
In addition to routine maintenance, personnel 
should go to sampling sites as soon as feasible 
after events based on QA/QC guidelines to 
collect data, retrieve samples, maintain equip-
ment, and conduct necessary repairs.

Uncertainty of Edge-of-Field Data. Much 
of the research and practical guidance on 
EOF and small watershed sampling presents 
a similar conclusion, specifically that project 
success is determined by achieving a proper 
balance between monitoring resources and 
the quality of resulting data (Shih et al. 1994; 
Tate et al. 1999; Agouridis and Edwards 
2003; Abtew and Powell 2004; King et al. 
2005; Harmel and King 2005; Harmel et 
al. 2006b; Miller et al. 2007). This common 
conclusion highlighted the need for meth-
ods to estimate the quality of data collected 
(measurement uncertainty) and the impor-
tance of understanding that uncertainty. Also, 
some contend that uncertainty estimation 
should be required in field and model-
ing studies (Beven 2006; Pappenberger and 
Beven 2006).

Thus, building on work by Montgomery 
and Sanders (1986), uncertainty estimation 
methods were developed specifically for esti-
mating runoff, sediment, and nutrient data 

uncertainty at the EOF and small watershed 
scales (Harmel et al. 2006b, 2009, 2016a; 
McCarthy et al. 2008). Combined with scien-
tific and practical knowledge, measurement 
uncertainty can now be considered to bet-
ter allocate project resources and accurately 
characterize water quality. This knowl-
edge formed the basis of USDA Natural 
Resources Conservation Service (NRCS) 
Interim Conservation Practice Standard 
Monitoring and Evaluation Code #799, 
which was later updated to Conservation 
Activities #201 and #202 for Edge-of-Field 
Water Quality Monitoring (USDA NRCS 
2012a, 2012b). These standards were devel-
oped by university and USDA Agricultural 
Research Service (ARS) researchers to 
address programmatic, financial, operational, 
and technical issues including uncertainty 
and data quality for EOF sampling projects.

Uncertainty Estimation Framework. 
Montgomery and Sanders (1986) developed 
the first known conceptualization of uncer-
tainty associated with water quality data. 
Later, Harmel et al. (2006b) produced the first 
cumulative uncertainty estimates for runoff 
and sediment and nutrient flux (figure 2) 
using an uncertainty estimation framework, 
which categorized the sources of uncertainty 
into the following procedural categories:
• Discharge measurement: The uncertainty 

in flow measurement has been under-
stood for decades (Buchanan and Somers 
1976, 1982; Brakensiek et al. 1979; Rantz 
et al. 1982; Kennedy 1984; Chow et al. 
1988; Pelletier 1988; Carter and Davidian 
1989; Sauer and Meyer 1992).

• Sample collection: The uncertainty 
introduced by manual and automated 
stormwater sampling is a function of 
constituent type and the sample col-
lection method and frequency (Martin 
et al. 1992; Ging 1999; USGS 1999; 
Robertson and Roerish 1999; King and 
Harmel 2003; Harmel et al. 2003, 2006a, 
2010a; Harmel and King 2005; Miller et 
al. 2007; Rode and Suhr 2007).

• Sample preservation/storage: Physical 
and biochemical processes occurring 
between sample collection and analysis 
can affect nutrient and microorganism 
concentrations, thus contributing uncer-
tainty in the resulting data (Lambert et al. 
1992; Kotlash and Chessman 1998; Jarvie 
et al. 2002; McCarthy et al. 2008, 2009).

• Laboratory analysis: Sample analysis con-
tributes measurement uncertainty in 
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EOF data (Ludtke et al. 2000; Jarvie et al. 
2002; McCarthy et al. 2008, 2009).

From the 2006 framework, Harmel et 
al. (2009) developed the Data Uncertainty 
Estimation Tool for Hydrology and Water 
Quality (DUET-H/WQ). Both utilize 
the root mean square error propagation 
methodology to estimate cumulative 
probable uncertainty, assuming that under- 
and over-estimation are equally likely. 
DUET-H/WQ helps users assign appro-
priate uncertainty estimates by providing 
published uncertainty information for 
data collection procedures. Application of 
DUET-H/WQ to several real-world data 
sets (Harmel et al. 2009) indicated that, typ-
ically, uncertainty was lower for flow (±7% 
to 23%) than for sediment (±16% to 27%), 
dissolved N and P loads (±14% to 31%), and 
total N and P loads (±18% to 36%).

McMillan et al. (2012) highlighted the 
DUET-H/WQ tool and Data Uncertainty 
Engine (Brown and Heuvelink 2007) as 
starting points for data uncertainty analy-
sis, lending transparency and repeatability 
to uncertainty quantification along with 
emphasizing the importance of utiliz-
ing quantitative, site-specific information 
when available. McMillan et al. (2012) 
close their review with the call for an 
improved “culture of engagement” for 
working with data uncertainty. 

Recent studies have continued and 
extended the uncertainty line of research 
(Birgand et al. 2010, 2011, 2013; Moatar et 
al. 2012; Williams et al. 2015). Much of this 
research has focused on furthering scien-
tific understanding of flow measurement 
uncertainty and the uncertainty in nutri-
ent flux related to sampling frequency and 
load estimation technique. McCarthy et al. 
(2008) extended the uncertainty research to 
address E. coli flux in stormwater. Their anal-
ysis produced a mean uncertainty of ±33% 
and a range of ±15% to 67% due to storage 
and analytical uncertainty in discrete E. coli 
concentrations. Building on McCarthy et 
al. (2008), Harmel et al. (2016a) conducted 
a comprehensive uncertainty analysis for 
E. coli that included random bi-directional 
uncertainty as in the previous work, as well 
as systematic uncertainty to account for 
directional bias (e.g., die off). The resulting 
random measurement uncertainty for E. 
coli concentrations were ±34%, ±70%, and 
±106% for the good, average, and poor “data 
quality” scenarios (figure 2).

Figure 2
Total random uncertainty for flow and sediment, nitrogen (N), phosphorus (P), and E. coli  
concentrations (whiskers represent the maximum and minimum for the typical data quality  
scenario, and black dot represents the average). For E. coli data, the ±33% average uncertainty 
of McCarthy et al. (2008) and the ±34% uncertainty of the “good” data quality scenario (Harmel 
et al. 2016a) are readily achievable with proper QA/QC and good sampling conditions. Q = flow. 
TSS = total suspended solids. NO

3
-N = nitrate-nitrogen. PO

4
-P = orthophosphate-phosphorus.
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Current Research and a Glimpse into  
the Future
The increasing importance of water quality 
data to evaluate the benefits of conserva-
tion practices and address high-profile water 
quality impairments demands further 
improvement in the quantification of water 
quality at the EOF. Thus, lower cost systems, 
practical improvements, and enhanced in situ 
sampling are driving current research and 
will likely dominate the field of EOF mon-
itoring in the coming years. For the same 
reasons, enhanced understanding and com-
munication of the “quality” or uncertainty of 
that data is increasingly important in model-
ing and decision making.

Additionally, as investment decisions 
related to EOF monitoring are made and 
scrutinized, projects that serve multiple pur-
poses should receive priority in terms of 
resource allocation. EOF projects can and 
should be designed to not only collect data 
but to answer questions about conserva-
tion efforts and water quality that are facing 
researchers, policy makers, stakeholders, and 
land managers. For instance, what is the effi-
ciency of a conservation practice or suite of 
practices? What are the efficiency trends in 
loss over time? What are the regional differ-
ences in practice efficiency?

Lower Cost Systems and Practical 
Improvements. Recently scientists have 

developed a prototype EOF runoff moni-
toring gauge designed to minimize financial 
and technical barriers to EOF monitoring 
in northern climates. The prototype system 
includes low-cost hardware components (i.e., 
custom electronic data logger, original equip-
ment manufacturer (OEM) stage sensors, 
low-cost peristaltic pump, and low-profile 
flume) and innovative system designs (i.e., 
flume heaters, equipment enclosures, and 
integrated systems) intended to reduce equip-
ment and installation costs as well as reduce 
the cost of operating and maintaining gauging 
stations (Mentz et al. 2016).

Initial results of prototype field tests have 
proved successful and also highlighted com-
ponents of the prototype system that could be 
improved. Low-cost ultrasonic stage sensors 
produced accurate estimates of flume stage 
when compared to time-lapse photos of in 
flume staff gauges (R2 = 0.97). The modified 
flume is designed to gauge larger discharge 
events at lower heads, therefore lowering the 
height of berms and wing walls and instal-
lation costs. In laboratory tests, the flume 
performed well overall; however, turbulent 
flow resulted in less accurate stage readings at 
high discharge rates. Integrated flume heat-
ers and gauge enclosures, while increasing 
equipment costs, significantly decreased the 
time and effort required to prepare stations 
for monitoring winter snowmelt events, and 
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improved working conditions for techni-
cians maintaining the gauging stations. The 
low-cost sampler produced similar estimates 
of suspended sediment (R2 = 0.95) and 
nitrate-N (NO3-N) (R2 = 0.89) when com-
pared to a conventional automated sampler. 
Several iterations of the data logging hard-
ware have been developed and field tested in 
an effort to address deficiencies and increase 
capabilities and reliability.

In Situ Sensors. In situ sensors have been 
conceptualized, developed, and deployed 
for decades in attempts to overcome lim-
itations of traditional sampling methods 
and analytical procedures. Ideally, in situ 
sensors would circumvent difficulties associ-
ated with sample collection, transportation, 
storage, processing, and analysis. Zhang and 
Zhang (2014) provide a thorough discussion 
of these sensors and the potential for them to 
be rapidly and easily deployed and provide 
continuous in situ data. Rode et al. (2016) 
provide insightful discussion of in situ sen-
sors, the impacts of high frequency, high 
density data on models, limitations of cur-
rent technology, and future directions.

One type of in situ device is passive sam-
plers, which rely on the diffusion of analytes 
through a diffusive surface onto an adsor-
bent. Passive samplers can be deployed for an 
extended period with little to no maintenance 
and provide time-weighted concentrations, 
especially for trace chemicals. Rozemeijer et 
al. (2010) provide valuable information on 
the testing, field operation, and comparative 
results for measuring NO3 loads and concen-
trations with the passive sampler developed 
by De Jonge and Rothenberg (2005).

Miniaturized electronic devices capable of 
measuring temperature, pH, conductivity, 
and dissolved oxygen (DO) on a semicon-
tinuous basis have been available since the 
1980s. These multiparameter probes (or 
multiprobes) were later equipped with ion 
selective electrodes to measure inorganic 
constituent concentrations, such as NO3-
N. Although these sensors were successful 
in laboratory settings (Bakker et al. 1997; 
Bühlmann et al. 1998; Bobacka et al. 2008), 
they experienced substantial signal drift 
(Hanrahan et al. 2004) in field deployment 
forcing further correction (Scholefield et al. 
1999, 2005; LeGoff et al. 2002, 2003). Since 
the 1990s, turbidity sensors have been uti-
lized, either as stand-alone instruments or in 
multiprobes. Turbidity has been routinely 
used as a surrogate measure to estimate total 

suspended solids (Gippel 1995; Brasington 
and Richards 2000; Birgand et al. 2004; 
Billotta and Brazier 2008; Minella et al. 
2008; Navratil et al. 2011; Jones et al. 2011; 
Thompson et al. 2014) and total P concen-
trations (Jones et al. 2011). These estimates, 
however, rely on relationships with turbidity 
derived on a station by station basis, which 
introduces a potentially significant source of 
measurement uncertainty.

More recently, optical instruments mea-
suring light absorbance and fluorescence 
have shown success. Spectrophotometers 
measuring absorbance (190 to 250 nm) 
have been used since the late 1980s to mea-
sure NO3 concentrations (Crumpton et al. 
1992). Absorbance at 254 nm has also been 
used to estimate dissolved organic carbon 
(C) (Brandstetter et al. 1996; Deflandre and 
Gagné 2001). The abundant information 
embedded in absorbance spectra has been 
used to develop a more robust relationship 
to predict not only parameters known to 
absorb light (e.g., NO3, dissolved organic C, 
and total suspended solids) but others as well 
(e.g., phosphate [PO4], organic N, bromine 
[Br], iron [Fe], and silicon [Si]) (Etheridge et 
al. 2014; Birgand et al. 2016). Even though 
all optical instruments (i.e., turbidity, absor-
bance, and fluorescence sensors) are subject 
to biological and chemical fouling (Etheridge 
et al. 2013), these in situ sensors are poten-
tially transformative because they can ideally 
provide high frequency data and avoid many 
of the constraints associated with field sam-
pling and laboratory analysis.

The importance of developing accurate, 
reliable, and affordable sensors for nutri-
ents in water is highlighted by the US 
government-sponsored Nutrient Sensor 
Challenge, which is a global competition to 
incentivize development and production of 
NO3-N and PO4-P sensors. Specifically, the 
Nutrient Sensor Challenge is a market stim-
ulation and innovation effort to accelerate 
development and deployment of affordable 
(<US$5,000), reliable, and accurate sensors 
that measure these constituents in water with 
the goal of commercial availability by 2017 
(www.act-us.info/nutrients-challenge). The 
problem as expressed by the Challenge is 
that current methods for measuring nutrient 
loads are expensive and inadequate to capture 
the temporal and spatial variability within 
ecosystems. While we might not completely 
agree with the intent of this statement, the 
value of accurate, durable, and affordable 

in situ sensors for nutrient concentrations 
could be tremendous; however, the need for 
and expense of flow measurement necessary 
for load determination with sensor-derived 
concentrations should not be overlooked.

Application of Measurement Uncertainty 
in Modeling. Research by Harmel and Smith 
(2007), Moriasi et al. (2007), and Harmel et 
al. (2010b) established methods to incorpo-
rate calibration/validation data uncertainty 
into model evaluation, and this topic is 
receiving a great deal of attention. The 
increased use of models in water resource 
policy, management, and litigation high-
lights the importance of uncertainty analysis 
(Shirmohamadi et al. 2006; Black et al. 2014; 
Harmel et al. 2014; Guzman et al. 2015). 
Numerous researchers including Abbaspour 
et al. (2007), McMillan et al. (2010), Arnold 
et al. (2012), Chen et al. (2014), and Yen et 
al. (2014, 2015, 2016) are working to better 
understand and quantify all sources of pre-
diction uncertainty, including uncertainty 
in flow and water quality data. The bene-
fits include (1) appropriately sharing burden 
of accurate prediction with data providers, 
(2) conducting more realistic evaluations 
of model performance, (3) helping prevent 
over fitting, (4) focusing model deficiency 
(where simulations do not fall within the 
uncertainty range of measured data or when 
model uncertainty is relatively high), and 
(5) accurately communicating model per-
formance. Although most modelers would 
agree with these benefits of model uncer-
tainty analysis, enhanced understanding is 
needed to communicate the value of model 
results and their limitations to stakeholders, 
policy makers, and regulators.

Application of Measurement Uncertainty 
in Decision Making. In spite of the fact that 
all measurements introduce uncertainty in 
the resulting value and the general agree-
ment that uncertainty analysis does benefit 
hydrologic and water quality analyses, mea-
surement uncertainty is still commonly 
ignored (McMillan et al. 2012), although 
less so in recent years. The justifications for 
ignoring measurement uncertainty in the 
past included tenuous philosophical con-
cerns related to (1) the belief that scientists 
and engineers can understand uncertainty 
but not the public, stakeholders, and elected 
officials, and (2) the fear of negative percep-
tion of data with high uncertainty, although 
this is subjective, and even data collected with 
accepted protocols and trained personnel can 
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exhibit considerable uncertainty (Harmel et 
al. 2006b, 2009). The additional time and 
effort required to estimate and report uncer-
tainty with measured data is likely another 
deterrent. However, another justification—
the lack of adequate scientific understanding 
on the subject—is no longer valid due to 
the recent advances discussed previously. To 
maintain scientific integrity, scientists and 
engineers have a responsibility to accurately 
report what is known and what is unknown, 
including the quality of data reported.

As stated by Montgomery and Sanders 
(1986), “incorporation of uncertainty analy-
ses in the decision making process is needed 
to help decrease the state of doubt as the 
best course of action…” This general state-
ment presented in a conceptual framework 
to estimate uncertainty in measured water 
quality data highlights the value of data with 
corresponding uncertainty estimates to bet-
ter inform regulation, policy, and resource 
decision making. More recently McMillian 
et al. (2012) stated that quantitative estimates 
are needed to communicate data uncertainty 
across disciplines’ boundaries to data users, 
policy makers, and the general public. The 
direct benefits of considering measurement 
uncertainty in research and monitoring at 
the EOF and small watershed scales (1) allows 
technical staff to focus QA/QC attention on 
procedures with the greatest uncertainty; (2) 
highlights the benefits of preventative main-
tenance, training, and proper use of field 
and laboratory techniques; and (3) assists 
managers to better balance project expendi-
tures and resource commitments with data 
quality goals. Filoso et al. (2015) stated that 
ideally, uncertainty in water quality measure-
ments should be used to evaluate whether 
load reductions are scientifically defensible. 
Although they made this statement in the 
context of stream restoration, it also applies 
to field-scale evaluation of conservation 
practice effectiveness.

These benefits, along with expanding 
research, will likely further increase the 
application of uncertainty analyses in water 
quality monitoring projects; however, a 
couple of related topics warrant additional 
discussion. First, the long-standing practice 
of judging data values as “good” or “bad,”—
for instance, in determining eligibility for 
inclusion in a state database—is erroneous. 
While we certainly recognize that there are 
bad data—defined as data collected with 
improper methods and/or data resulting 

from mistakes in collection, procession, 
analysis, transcription, or other processes—
all other data are valuable. Thus, we propose 
that all data collected with accepted meth-
ods and without mistakes should instead be 
presented with the corresponding measure-
ment uncertainty. This will allow data users 
to determine the applicability of the data for 
a particular purpose based on an acceptable 
level of uncertainty. It will also avoid the 
incorrect and all too common assumption 
that data presented in reports and databases 
are without uncertainty, by acknowledg-
ing the fact that all measurements introduce 
uncertainty in the resulting value.

Second, all data users need to appropriately 
utilize data and corresponding uncertainty 
estimates. It is not adequate to acknowledge 
the fact that all measured data have some 
level of uncertainty and that for water qual-
ity data this uncertainty is contributed by 
collection, preservation, storage, and analy-
sis procedures. Users should utilize the data 
and supplemental information (uncertainty) 
to evaluate the influence on important water 
quality decisions (e.g., development of QA/
QC protocols, assessment of standards, and 
evaluation of model performance). All too 
common examples of misapplication include 
(1) flagging of data as bad or unusable if pre-
sented with high uncertainty, even though 
that level of uncertainty may be the lowest 
levels possible given technological or site 
limitations; (2) justifying the superiority 
of model predictions relative to measured 
data, especially without conducting com-
prehensive model uncertainty analysis; and 
(3) questioning data integrity when the data 
show a water quality impact not favorable to 
or desired by stakeholders. The uncertainty 
in measured data needs to be embraced, not 
disregarded or misused.

Third, the issue of uncertainty related 
to determination of water quality standards 
violation has been recently discussed in US 
Environmental Protection Agency (USEPA) 
and state agency meetings. While it is not 
appropriate for this research summary paper 
to advocate for specific regulatory processes, 
consideration of measurement uncertainty in 
evaluation of water quality standards attain-
ment is supported by current science. In the 
simplest terms, this may involve differing reg-
ulatory actions depending on the confidence 
(uncertainty) in measured water quality data. 
For example, data with relatively low uncer-
tainty that indicate a violation of standards 

may warrant more strict or decisive action 
than do violations indicated with highly 
uncertain data.

Summary and Conclusions
This paper conveys decades of collective wis-
dom to those who are managing, designing, 
implementing, or operating water quality 
monitoring programs, particularly at smaller 
scales (field to headwater streams). The prac-
tical recommendations within are underlain 
by an honest acknowledgment that mea-
suring water quality at the EOF and small 
watershed scales is difficult, time consuming, 
and expensive. In spite of the challenges, 
the data and understanding produced are 
increasingly important for determining con-
servation practice effectiveness, calibrating 
and validating water quality models, and 
designing effective nonpoint source policy 
considering soil, management, meteorolog-
ical, and land use differences.

This manuscript presents background 
information, which sets the stage for recent 
developments and summarizes how those 
developments advanced the science of 
EOF water quality sampling. In addition, 
current and expected research and develop-
ment related to lower cost systems, practical 
improvements, enhanced in situ sampling, 
and increased consideration of the uncer-
tainty of EOF data in modeling and decision 
making are presented. Well-designed EOF 
monitoring efforts are a critical component 
to enhanced understanding of how manage-
ment changes on the landscape influence 
water quality. This need underscores the 
importance of designing EOF monitoring 
to produce relevant data to equip scientists, 
stakeholders, land managers, and policy mak-
ers for addressing water quality problems at 
the EOF and downstream.

Disclaimer
USDA is an equal opportunity provider and employer.
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